Урок 20 Бесплатно Деление с остатком

К списку статей 23 ноября 2020 –>image

Тема дробей — одна из самых непростых для школьников. Понять их неподготовленному ребенку, а тем более выполнять с ними операции, может быть достаточно сложно. Но даже самая трудная задача может стать простой и понятной, если правильно к ней подойти. Для детей нужно использовать фантазию, наглядность и элементы игры. А также – сохранять спокойствие и терпеливо объяснять, даже если это потребуется сделать много раз.

Как объяснить суть дробей ребенку?

Слово «дробь» будто говорит само за себя — оно означает дробление, деление. В школьной программе к изучению дробей приступают только в 5 классе, освоив все действия с целыми числами. Но знакомство с ними целесообразно начинать заранее, еще в старшем дошкольном возрасте. Это формирует пространственные представления у детей и тренирует логическое мышление.

image

Для начала нужно объяснить ребенку понятие долей. Это очень легко сделать на наглядных повседневных примерах. Самый простой и доступный — еда. Например, пирог — целый. Разделить его можно на несколько одинаковых частей. Один кусочек такого пирога и будет называться одной долей из всех возможных. Поделив пирог на четыре части, один кусочек называют одной четвертой частью.

Таким образом делить можно все, что угодно: яблоки, апельсины, плитки шоколада, конфеты в коробке и т. д. Еще один прекрасный наглядный материал для изучения дробей — кубики конструктора Lego. С их помощью можно поделить целое на равные части очень легко. Дети быстро запоминают форму кубиков, и им не требуется постоянно пересчитывать количество выступающих элементов на них.

Если ребенок увидит практическое применение дробей и востребованность их в реальной жизни, ему будет проще понять их и осознать важность получения математических знаний и навыков.

Что нужно знать о дробях?

1. Дробь — число нецелое, оно обозначает количество долей целого.

2. Дробь меньше целого.

3. Чем на большее число долей поделено целое, тем эти доли меньше и наоборот — чем долей меньше, тем они, соответственно, больше.

Для обозначения долей в математике используют понятие обыкновенная дробь. С ее помощью можно записать абсолютно любое необходимое количество долей.

Обыкновенная дробь представляет собой две части, именуемые числителем и знаменателем. Записываются они разделенными горизонтальной чертой либо наклонной вправо линией. Знаменатель пишется внизу либо справа от дробной черты, он показывает общее количество частей от целого, на которое оно было поделено. А числитель пишется вверху или слева от дробной черты и показывает, сколько долей целого сейчас взяли.

Вернемся к нашему пирогу. Очевидно, что разделить его реально на сколько угодно равных частей. В зависимости от того, на сколько частей его разделили, меняется и знаменатель дроби. У пирога, разделенного одной прямой линией на две части, знаменатель будет равен 2, у разделенного на три части — 3 и т. д. Числитель же, в свою очередь, показывает, сколько частей сейчас взято. Если взяли только одну часть из двух, то получится дробь 1/2, только две из трех — 2/3 и т. д.

Что такое смешанные дроби?

В математике выделяют дроби правильные и неправильные. Правильные — те, у которых числитель меньше знаменателя. Например: 1/3, 2/5, 4/12. Но бывает и так, что числитель становится больше знаменателя. Если объяснять предметно, то взято больше частей пирога, чем было тех, на которые он поделен. Такое вполне возможно и в жизни, и в математике.

У таких дробей можно отделить целую часть и оставшуюся после этого дробную. То есть будет видно, сколько взято целых пирогов и плюс определенное количество его частей. Нужно хорошо представить себе описанное, или даже проверить на практике, а не просто заучивать формулы. Тогда сокращение дробей будет выполняться ребенком осмысленно и безошибочно.

Для того чтобы трансформировать неправильную дробь в смешанное число, следует сперва числитель поделить на знаменатель. В результате почти всегда получим целое число и какой-то остаток. Целое число и нужно записать, как целую часть. А остаток — отправить в числитель дробной части. Неизменным остается только знаменатель.

Неправильными называют и дроби с одинаковым числом над и под дробной чертой: 6/6, 12/12 и т. д. Очевидно, что превратить их можно в 1. Наглядно это взято столько кусочков пирога, на сколько он и был поделен, т. е. целый пирог.

Примеры:

  • 14/5 = (5*2+4) / 5 = 2 4/5
  • 21/6 = (6*3+ 3) / 6 = 3 3/6

Задание:

Выделите целую часть из неправильных дробей:

  • 15/4,
  • 22/12,
  • 30/7.

Можно провести противоположную процедуру — превратить смешанное число в неправильную дробь. Эта операция часто применяется в математических вычислениях, поэтому будет полезным узнать о ней. Для этого нужно сперва умножить целую часть и знаменатель. Затем получившееся число прибавить к числителю, а знаменатель оставить прежним.

Примеры:

  • 3 1/8 = (3*8+1) / 8 = 25/8
  • 7 4/9 = (7*9+4) / 9 = 67/9

Задание:

1. Преобразовать в смешанное число неправильную дробь:

  • 27/4,
  • 18/5,
  • 45/7.

2. Выполнить обратную первой задачу — смешанное число превратить в неправильную дробь:

  • 3 4/5;
  • 12 7/11.

Десятичные дроби

Дроби, в знаменателях которых есть числа, кратные десяти — 10, 100, 1000 и т. д. — в математике можно обозначать следующим образом. Сначала пишется целая часть, а потом числитель из дробной части, отделенный запятой.

Например, 5 4/10 попробуем записать в виде десятичной дроби. Пишем целую часть (5), ставим запятую и далее пишем числитель дробной части (4). Получаем: 5,4. Читается эта дробь так: «пять целых и четыре десятых». Число, представленное в таком виде, именуется десятичной дробью.

Существуют также десятичные дроби без целой части. Например: 7/100. Как быть в таком случае? Чтобы записать подобную дробь, пишут ноль, ставят запятую и далее записывают числитель дроби — 0,07. Такая дробь читается как «ноль целых, семь сотых».

Десятичные дроби очень удобны, они используются в точных вычислениях. Десятичная система исчисления  применяется человечеством с самых древних времен. Она интуитивна понятна и проста.

Задание:

Преобразовать следующие дроби в десятичные:

  • 8/10,
  • 4/100,
  • 7/1000.

Сокращение дробей

Сокращение дробей выполняют для того, чтобы их упростить. Если числитель и знаменатель дроби таковы, что делятся на одно и то же число (имеют общий делитель), то можно просто разделить их на это число, упростив тем самым дробь. Эта математическая операция называется сокращением дробей. Чтобы разобраться с этим, рассмотрим пару таких примеров.

Пример 1. Сократить дробь 8/12

Решение будет следующим. Наибольшее число, на которое делятся и 8, и 12, — это 4. Поэтому, чтобы сократить дробь, просто поделим ее числитель и знаменатель на 4:

8/12 = 8:4 / 12:4 = 2/3

Пример 2. Сократить дробь 10/25

Решение. Наибольшее число, на которое делятся и 10, и 25, — это 5. Потому, чтобы сократить дробь, поделим ее числитель и знаменатель на 5:

10/25 = 10:5 / 25:5 = 2/5

Несократимой называется дробь, у которой числитель и знаменатель имеют только один общий делитель — единицу.

Задание:

Сократите следующие дроби:

  • 6/18,
  • 20/40;
  • 7/21.

Сложение дробей

Сначала разберем сложение дробей с одинаковыми знаменателями. В этом случае операция предельно простая. Складываются числители дробей, а знаменатель остается прежним.

Примеры:

  • 1/7 + 2/7 = 3/7
  • 3/8 + 5/8 = 8/8 = 1

Задание:

Выполни сложение дробей с одинаковыми знаменателями:

Но все усложняется, если нужно сложить дроби с разными знаменателями. В этом случае необходимо привести дроби к наименьшему общему знаменателю. Чтобы это сделать, необходимо найти наименьшее общее кратное. Это такое число, которое делится на оба эти числа без остатка. Например: 3/7 + 2/6. Наименьшее общее кратное для чисел 7 и 6 будет 42.

Далее ищем дополнительные множители для каждой из дробей. Для этого найденное на предыдущем этапе наименьшее общее кратное делим по очереди на знаменатель каждой из дробей:

  • 42 / 7 = 6 — это будет дополнительный множитель для 3/7;
  • 42 / 6 = 7 — это, соответственно, дополнительный множитель для 2/6.

Обе части каждой из наших дробей, и числитель и знаменатель, умножаем на свой, определенный выше, множитель:

  • 3*6 / 7*6 = 18/42;
  • 2*7 / 6*7 = 14/42.

Складываем полученные дроби аналогичным образом, как уже разобранные выше дроби с одинаковыми знаменателями:

  • 18/42 + 14/42 = 32/42

Если это возможно, то дробь сокращают. Если дробь получилась неправильная, то следует целую часть из нее выделить.

Задание:

Выполни сложение дробей с разными знаменателями:

Вычитание дробей

Эта операция проводится аналогично сложению. Чтобы вычесть две дроби с одинаковыми знаменателями, нужно найти разность их числителей, а знаменатель оставить тем же.

Пример:

7/9 — 2/9 = (7-2) / 9 = 5/9

Задание:

Выполни вычитание дробей с одинаковыми знаменателями:

Для дробей с разными знаменателями также придется найти наименьшее общее кратное и дополнительные множители. Затем, по аналогии со сложением, произвести вычитание.

Пример:

6/7 — 8/10 = (6*10-8*7) / 70 = (60-56) / 70 = 4/70

Задание:

Выполни вычитание дробей с разными знаменателями:

Умножение дробей

Существует два варианта умножения дробей. Рассмотрим каждый из них в деталях.

Умножение обыкновенных дробей

В этом случае числители обеих дробей перемножаются — это будет новый числитель. Знаменатели обеих дробей также перемножаются — это будет новый знаменатель.

Пример:

2/5 * 3/4 = (2*3) / (5*4) = 6/20 = 3/10

Если это возможно, то следует сократить дроби перед перемножением. Это облегчит дальнейшие действия.

Пример:

24/35 * 25/36 = (24*25) / (35*36) = (2*5) / (7*3) = 10/21

Умножение смешанных дробей

Чтобы это сделать, необходимо превратить дроби в неправильные и далее действовать по алгоритму, приведенному в первом пункте.

Пример:

4 2/7 * 5 3/5 = 30/7 * 28/5 = (30*28) / (7*5) = (6*4) / (1*1) = 24/1 = 24

Задание:

Выполните умножение дробей:

  • 5/7 * 6/8;
  • 6/11 * 2/3;
  • 2 3/7 * 4 5/9;
  • 4 6/7 * 7 9/10.

Деление дробей

Освоив умножение, с делением также можно справиться легко. Правило деления дробей заключается в следующем: при делении одной дроби на другую нужно первую перемножить на обратную (перевернутую) вторую дробь. Или, иными словами, числитель первой умножить на знаменатель второй (это будет новый числитель), а знаменатель первой умножить на числитель второй (это будет новый  знаменатель).

Пример:

4/7 : 2/5 = 4/7 * 5/2 = 20/14 = 10/7 = 1 3/7

Бывают ситуации, когда дробь нужно разделить на целое число. В этом случае следует представить дробь как неправильную. Числителем у нее будет это целое число, а знаменателем просто единица. Далее действовать нужно по уже знакомому правилу деления дробей из предыдущего случая.

Пример:

5/9 : 2 = 5/9 : 2/1 = (5*1) / (9*2) = 5/18

Задание:

Выполните деление дробей:

  • 6/11 : 3;
  • 7/15 : 2;
  • 9/12 : 4.

Сравнение дробей

Если сравниваются дроби с одинаковыми знаменателями, то очевидно, что большей будет та, числитель у которой больше.

Пример:

1/5 < 4/5, так как знаменатели одинаковы, а в числителе 1 меньше 5.

Если сравниваются дроби с одинаковыми числителями, то большей будет та, знаменатель у которой меньше.

Пример:

1/2 > 1/8, так как числители одинаковы, а в знаменателе 8 больше 2.

Дроби же с разными знаменателями так просто не сравнишь. Нужно сперва определить их общий знаменатель и привести к нему обе дроби. Правила этой операции были приведены выше. Получим дроби, сравнить которые можно очень легко.

Пример:

Сравниваем дроби 2/5 и 1/10. Для этого приводим их к общему знаменателю — 10. Получаем 4/10 и 1/10. Теперь сравниваем дроби, уже имеющие одинаковые знаменатели: 4/10 > 1/10.

Есть один секрет, который нужно запомнить. Если одна из сравниваемых дробей неправильная, то она всегда больше правильной. Если подумать и вспомнить свойства дробей, то все становится понятно.  Ведь неправильная дробь всегда будет больше единицы, тогда как правильная, наоборот, всегда будет меньше.

Задание:

Определите, какие дроби изображены на рисунке, и сравните их:

Итак, мы рассмотрели дроби, правила всех действий с ними. Надеемся, что наши объяснения и рекомендации будут очень полезны. Начинайте знакомить детей с дробями еще до школы. Хорошо усвоив эти понятия, ребенок без труда справится затем и с записью дробей, и с действиями с ними.

Математика и логика для детей 7-13 лет Развиваем логическое мышление через решение сюжетных математических задач в интерактивном игровом формате узнать подробнее

Читайте также:

Читай вместе с Умназией! укажите почту

Не расстраивайтесь, если ваш ребенок не понял на уроке, как происходит процесс деления чисел. Учитель в школе не всегда может уделить внимание каждому ученику. Наберитесь терпения и станьте для школьника домашним педагогом. Математический процесс сначала объясняйте в игровой форме. Постепенно переходите к более сложным задачам. Ребенок все поймет и математика станет у него самым любимым предметом.

1 Объясняем ребенку деление в форме игры

Отложите в сторону скучные учебники. Превратите обучение в интересную игру:

  • возьмите яблоки или конфеты. Попросите малыша, чтобы он разделил между двумя-тремя куклами или мишками четыре конфетки или яблока. Постепенно увеличивайте количество фруктов до восьми и десяти. Сначала ребенок будет раскладывать предметы медленно. Не кричите на него, запаситесь терпением. Если ошибается – спокойно поправьте. После того, как игрушки «получат» конфеты, пусть ребенок посчитает, сколько у каждой куклы их получилось. Подведите итог. Если было 6 конфет и их раздали трем куклам – каждой досталось по две. Объясните, что «разделить» – это значит, что всем нужно раздать поровну;
  • другой игровой пример. Объясняем деление на цифрах. Скажите ребенку, что цифры являются теми же яблоками или конфетами. Объясните ему, что количество конфет, которое нужно разделить называется делимое. А количество человек, на которых делятся конфеты – делитель;
  • дайте малышу 6 яблок. Попросите, чтобы он раздал их поровну бабушке, кошке и папе. Потом пусть он поделит это же количество предметов между котом и бабушкой. Объясните, почему получился разный результат;
  • объясняем деление с остатком. Дайте малышу 5 орехов, и пусть он угостит в одинаковом количестве ими папу и бабушку. Оставшийся орешек малыш забирает себе. Объясните на этом примере, что один орешек и является остатком.

Вышеуказанные способы в игровой форме помогут ребенку понять процесс деления и то, что большее число делится на меньшее. Первое число – это количество яблок или конфет, а число второе – участники, между которыми делятся предметы. Для ребенка в возрасте от 5 до 8 лет этой информации хватит. Учите делению малыша еще до школы, ему будет легче усваивать уроки математики в будущем.

2 Объясняем ребенку деление на примере таблицы умножения

Этот способ обучения подойдет для учеников начальных классов, если они знают умножения. Расскажите, что деление – это та же таблица умножения, но в ней происходят противоположные умножению действия. Наглядный пример для ребенка:

  • умножьте число 5 на 4. Получится 20;
  • напомните школьнику, что число 20 – это результат умножения двух вышеуказанных чисел;
  • разделите 20 на 5. Получите 4. Этим вы наглядно покажете, что деление является противоположным действием умножению.

Рассмотрите примеры с другими цифрами. Если школьник хорошо усвоил таблицу умножения и поймет связь между двумя математическими действиями – деление освоится легко.

3 Объясняем ребенку деление – определение понятий

Объясните ребенку названия чисел, участвующих в делении:

  • делимое. Число, которое надо разделить;
  • делитель. Число, на которое делимое разделяется;
  • частное. Итог, полученный после деления.

Для наглядности используйте те же примеры с конфетами и людьми или игрушками, которых ребенок должен угостить сладостями.

4 Объясняем ребенку деление столбиком

Переходите к этому обучению только после того, как ребенок усвоил вышеуказанные способы. Также он должен знать, как умножаются в столбик числа. Берем простой пример: 110 делим на 5. Процесс объяснения:

  • напишите на чистом листке бумаги эти числа;
  • разделите их перпендикулярными линиями так, как будете делить в столбик;
  • объясните, какое число является делителем, а какое – делимым;
  • определите с ребенком, какое число может сначала использоваться для деления. Первая цифра – 1 на 5 не поделится. Значит, надо взять следующую цифру к ней и получится число 11. Цифра 5 может поместиться в 11 два раза;
  • запишите цифру 2 в столбике под пятеркой. Попросите, чтобы ребенок умножил 5 на 2. Получится 10. Записываете эту цифру под числом 11;
  • вычитаете с ребенком из 11 число 10. Получится 1. Пишете возле единицы оставшийся нолик в столбике. Получается 10;
  • разделите с ребенком 10 на 5. Получится 2. Это число записываете под пятеркой, и конечный итог получается 22.

Начинайте обучение с двухзначных или даже однозначных цифр, которые можно делить без остатка. Постепенно усложняйте задачу.

Для легкого усвоения ребенком математики пробуждайте у него интерес к этому уроку. Сейчас появились таблицы деления. Но нужно ли ее запоминать ребенку, если он знает таблицу умножения и поймет, что деление – это процесс наоборот? Все зависит не только от школьного учителя, но и от ваших занятий со школьником.

Оглавление [Показать]

Для того чтобы у ребенка не возникали проблемы с освоением школьной программы, базовые знания необходимо получить уже в детстве. Степень подготовленности малыша напрямую зависит от вложенных в него родителями знаний. Конечно, даже самая тщательная подготовка не гарантирует того, что с первых школьных дней ребенок будет схватывать все на лету и без вопросов.

Содержание

  • Как научить ребенка делению: помогаем малышу разбивать слова по слогам
  • Программа деления для 2 и 3 класса: учимся правильно объяснять

Не ждите от ребенка быстрого восприятия новой информации

Обычно сложно дается маленьким школьникам деление слов на слоги и деление цифр. Как можно научить ребенка делению? Как объяснить и помочь усвоить этот материал? Рассмотрим подробнее в статье.

Родители дома должны разбирать пройденный в школе материал

В 1 классе учебная программа предусматривает изучение разбора слов по слогам. Для того чтобы помочь ребенку освоить материал, следуйте нескольким основным правилам разбора слов:

Объясняйте каждое решение ребенку несколько раз

Основы деления чисел начинают изучаться в начальной школе в начале 2 учебного года.

Малыши из таких классов уже знают цифры, умеют складывать и вычитать. Как научить ребенка делить двузначные числа столбиком? Приведем пример:

Делим 45 на 15.

  • Подбираем, сколько можно раз сложить 15, чтобы получить 45.
  • 15+15 = 30 – это мало;
  • 15+15+15 = 45 – это значит, что нужно 3 раза взять по 15.
  • Ответ: 45:15 = 3

В этом уроке рассказывается, как нужно делить одно чи

Мои каналы: Математика 1 класс

Приём деления в «столбик»

Мои каналы: Математика 1 класс

Подробно объясняется, как делить числа столбиком. Та�

Деление в задаче, Математика, 2 класс, Задача, Деление

Математика 5-6 классы. Деление столбиком. Поддержать к

Такой способ поможет и при объяснении деления двузначных чисел на однозначные. Еще расскажите ребенку, что деление – это обратный умножению метод. Если малыш поймет, почему 11 х 12 будет 132, ему легче дадутся основы этого арифметического действия.

Обучить ребенка делению в столбик можно, когда он уже знает цифры от 0 до 100 и таблицу умножения.

Ведь она — это деление наоборот, стоит просто поменять арифметические знаки. Все же постарайтесь объяснить основы деления на простых примерах. Возьмите для примеров яблоки или груши. Расскажите вашему школьнику, что фрукты – это делимое, а количество человек, между которыми они делятся, – это делитель.

Объясняйте ребенку каждый пример до тех пор, пока он не решит его самостоятельно. Базовые знания счета и принципа деления в столбик помогут быстро справиться с любым заданием!

Первые годы школьной жизни в младших классах ребенку даются нелегко. Часто после урока математики они не совсем хорошо понимают пройденную тему и нуждаются в повторном объяснении или закреплении темы.  На помощь приходят родители, у которых моментально возникает вопрос: «Как объяснить ребенку деление?». Сделать это можно несколькими способами, но изначально стоит убедиться, что ребенок хорошо усвоил такие математические действия, как сложение, вычитание и умножение. Важно, чтобы ребенок понимал суть такого математического действия, как деление. Для этого необходимо ему объяснить, что деление представляет собой разделение чего-либо на равные доли. Рекомендуется превратить процесс обучения в интересную игру, чтобы ребенок был сконцентрирован.

Самым простым способом объяснить деление является проведение наглядной демонстрации разделения предметов на равные доли. В качестве делимых предметов можно использовать все, что угодно, но желательно что-то интересное для ребенка. В качестве примера можно воспользоваться конфетами и плюшевыми игрушками.

Изначально нужно взять 2 конфеты и попросить ребенка разделить их между 2 плюшевыми игрушками. Благодаря такому простому примеру ребенок поймет суть математического деления. После этого можно переходить к более сложным примерам деления.

Делить однозначные числа на однозначные проще всего с использованием таблицы умножения. Для этого достаточно объяснить ребенку, что деление является действием обратным к умножению. Сделать это можно на любом правильном примере деления натуральных чисел.

Например: 2 умножить на 3 будет 6. Основываясь на данном примере продемонстрировать ребенку процесс деления. Следует действовать следующим образом: разделить 6 на любой множитель, например, на число 3. В ответе получится 2, то есть множитель неиспользованный при делении. Таким способом можно делить многозначные (двухзначные) числа на однозначные.

Еще Вы можете почитать  Как научить ребенка считать

Прежде, чем начать объяснение деления в столбик, нужно объяснить ребенку о значении делимого, делителя и частного. В примере 20:4=5, 20 является делимым, 4 делителем, а 5 частным. У каждой отдельной цифры в примере одно наименование.

Многозначные числа (трехзначные и двухзначные) проще всего делить в столбик. Для этого нужно записать многозначные числа уголком.

Например, нужно разделить трехзначное число 369 на однозначное число 3.

В качестве делителя записано трехзначное число 369, а в качестве делителя однозначное число 3. Первым делом важно объяснить ребенку, что деление в столбик происходит в несколько этапов:

  • Определение части делимого подходящего для первичного деления. В данном случае цифра 3. 3:3=1. Цифру 1 нужно записать в графу частное.
  • «Спустить» следующее делимое число. В данном случае это цифра 6. 6:3=2. Полученное число 2 нужно записать в частное.
  • Далее необходимо «спустить» следующее делимое число 9. 9 делится без остатка на 3, полученный результат необходимо записать в частное. Результатом деления трехзначного числа 369 на 3 получается 123.

Деление десятичного числа на двухзначное проходит примерно так же. В случае с десятичным числом необходимо объяснить ребенку, что запятую в делителе переносят на столько знаков, на сколько перенесли в делимом. Далее следует обычное деление в столбик.

Необходимо предупредить ребенка о встречающихся случаях деления с остатком. В качестве примера можно поделить двухзначное число 26 на 5 столбиком. В результате остается остаток 1.

Важно после объяснения позволить ребенку самостоятельно решить несколько примеров, чтобы весь изученный материал надолго остался в памяти ребенка.

А еще Вы можете посмотреть видео, где все объясняют понятным языком.

Не расстраивайтесь, если ваш ребенок не понял на уроке, как происходит процесс деления чисел. Учитель в школе не всегда может уделить внимание каждому ученику. Наберитесь терпения и станьте для школьника домашним педагогом. Математический процесс сначала объясняйте в игровой форме. Постепенно переходите к более сложным задачам. Ребенок все поймет и математика станет у него самым любимым предметом.

Объясняем ребенку деление в форме игры

Отложите в сторону скучные учебники. Превратите обучение в интересную игру:

  • возьмите яблоки или конфеты. Попросите малыша, чтобы он разделил между двумя-тремя куклами или мишками четыре конфетки или яблока. Постепенно увеличивайте количество фруктов до восьми и десяти. Сначала ребенок будет раскладывать предметы медленно. Не кричите на него, запаситесь терпением. Если ошибается – спокойно поправьте. После того, как игрушки «получат» конфеты, пусть ребенок посчитает, сколько у каждой куклы их получилось. Подведите итог. Если было 6 конфет и их раздали трем куклам – каждой досталось по две. Объясните, что «разделить» — это значит, что всем нужно раздать поровну;
  • другой игровой пример. Объясняем деление на цифрах. Скажите ребенку, что цифры являются теми же яблоками или конфетами. Объясните ему, что количество конфет, которое нужно разделить называется делимое. А количество человек, на которых делятся конфеты – делитель;
  • дайте малышу 6 яблок. Попросите, чтобы он раздал их поровну бабушке, кошке и папе. Потом пусть он поделит это же количество предметов между котом и бабушкой. Объясните, почему получился разный результат;
  • объясняем деление с остатком. Дайте малышу 5 орехов, и пусть он угостит в одинаковом количестве ими папу и бабушку. Оставшийся орешек малыш забирает себе. Объясните на этом примере, что один орешек и является остатком.

Вышеуказанные способы в игровой форме помогут ребенку понять процесс деления и то, что большее число делится на меньшее. Первое число – это количество яблок или конфет, а число второе – участники, между которыми делятся предметы. Для ребенка в возрасте от 5 до 8 лет этой информации хватит. Учите делению малыша еще до школы, ему будет легче усваивать уроки математики в будущем.

Объясняем ребенку деление на примере таблицы умножения

Этот способ обучения подойдет для учеников начальных классов, если они знают умножения. Расскажите, что деление – это та же таблица умножения, но в ней происходят противоположные умножению действия. Наглядный пример для ребенка:

  • умножьте число 5 на 4. Получится 20;
  • напомните школьнику, что число 20 – это результат умножения двух вышеуказанных чисел;
  • разделите 20 на 5. Получите 4. Этим вы наглядно покажете, что деление является противоположным действием умножению.

Рассмотрите примеры с другими цифрами. Если школьник хорошо усвоил таблицу умножения и поймет связь между двумя математическими действиями – деление освоится легко.

Объясняем ребенку деление – определение понятий

Объясните ребенку названия чисел, участвующих в делении:

  • делимое. Число, которое надо разделить;
  • делитель. Число, на которое делимое разделяется;
  • частное. Итог, полученный после деления.

Для наглядности используйте те же примеры с конфетами и людьми или игрушками, которых ребенок должен угостить сладостями.

Объясняем ребенку деление столбиком

Переходите к этому обучению только после того, как ребенок усвоил вышеуказанные способы. Также он должен знать, как умножаются в столбик числа. Берем простой пример: 110 делим на 5. Процесс объяснения:

  • напишите на чистом листке бумаги эти числа;
  • разделите их перпендикулярными линиями так, как будете делить в столбик;
  • объясните, какое число является делителем, а какое – делимым;
  • определите с ребенком, какое число может сначала использоваться для деления. Первая цифра – 1 на 5 не поделится. Значит, надо взять следующую цифру к ней и получится число 11. Цифра 5 может поместиться в 11 два раза;
  • запишите цифру 2 в столбике под пятеркой. Попросите, чтобы ребенок умножил 5 на 2. Получится 10. Записываете эту цифру под числом 11;
  • вычитаете с ребенком из 11 число 10. Получится 1. Пишете возле единицы оставшийся нолик в столбике. Получается 10;
  • разделите с ребенком 10 на 5. Получится 2. Это число записываете под пятеркой, и конечный итог получается 22.

Начинайте обучение с двухзначных или даже однозначных цифр, которые можно делить без остатка. Постепенно усложняйте задачу.

Для легкого усвоения ребенком математики пробуждайте у него интерес к этому уроку. Сейчас появились таблицы деления. Но нужно ли ее запоминать ребенку, если он знает таблицу умножения и поймет, что деление – это процесс наоборот? Все зависит не только от школьного учителя, но и от ваших занятий со школьником.

Деление чисел с остатком или без него является самым трудным из четырех арифметических действий. С основами этого процесса ребенок знакомится еще в самом раннем детстве иногда малышу приходится поровну делить конфеты между плюшевым мишкой и куклой. Правильно разделить угощение на несколько кучек для ребенка обычно труда не составляет.

Однако позже могут возникнуть проблемы. Школьные задачи не всегда подразумевают деление нескольких предметов на количество людей. Это могут быть, например, задания на скорость – и часто они вводят ребенка в ступор.

В таком случае научить принципам деления числа обязаны родители. Математика не терпит пустоты – если ребенок что-то пропустил или просто не усвоил информацию, это может сильно затруднить изучение дальнейших тем, а также других дисциплин в более поздних классах.

Обучение делению школьников младших классов

Если ребенок все прекрасно усвоил в игровой форме, то в школе ему придется применить свои знания и умения на практике. Именно в это время отход от привычных категорий – конфет, кукол и прочего – может вызвать серьезные затруднения.

  1. В этом возрасте ребенок школьник должен уже знать первые три арифметических действия и уметь оперировать ими. Он должен понимать и знать таблицу умножения. Вот она, кстати, в некоторых случаях поможет объяснить ученику, что деление – это умножение наоборот. Родителю стоит сесть рядом с ребенком и, изучая напечатанную на обложке тетради таблицу умножения, объяснить, как это работает на практике. Например, 4х7=28. А если пойти наоборот?  Уточнить, на пересечении какого числа с цифрой 7 находится 28. С 4. Вот и разделили.
  2. Теперь ребенок должен сделать цифровую запись этого процесса: это способствует закреплению информации в памяти.

Лишь после того, как ученик освоил и хорошо запомнил предыдущие способы, можно переходить к делению столбиком, с остатком или без него.

Вначале необходимо, чтобы ребенок понял и заучил название компонентов процесса деления:

  • делимое – то число, которое делят;
  • делитель – то, на что делят;
  • частное – конечный результат.

Далее нужно показать форму записи при делении столбиком. К примеру, нужно поделить двузначное число на однозначное:

  • вначале пишется делимое – пусть это будет 98;
  • справа от него рисуют уголок, как перевернутую букву «Т», в нем записывают делитель – в нашем случае 7;
  • теперь определяют наименьшее число в делимом, которое делится на 7 – это 9;
  • цифра 7 в числе 9 может поместиться 1 раз – значит, в частном пишем 1;
  • теперь нужно умножить делитель 7 на первую цифру частного 1 – получится 7. Его надо записать под 9;
  • из 9 вычесть 7 – получится 2.

Обратите внимание: полученная разность никогда не сможет быть равна или больше делителя. Если это произошло, значит, было неверно определено количество 7 в 9.

  • так как 2 на 7 не делится, сносят вниз следующую цифру из двузначного делимого – 8. Получили 28. Его можно поделить на 7 – получится 4;
  • эту цифру нужно записать рядом с 1 – получится 14. Это и будет частным в данном примере;
  • но правильно оформить решение все-таки нужно, поэтому 7 умножают на 4 – получают результат 28, который и пишут под 28. Вычитают 28 из 28 – получают 0. Его пишут под чертой, которой подводят итог решения.
  • в случае если остаток не равен нулю, то это – деление с остатком.

В первый класс идет не только малыш – родители вместе с ним начинают и заканчивают школу. Учитель не всегда имеет возможность объяснить каждому ученику ту или иную тему. И вот тогда родители должны научить свое чадо, что такое умножение, деление с остатком двузначного числа на однозначное. При переходе в третий класс задание усложнится – научить нужно будет делению с остатком и трехзначного числа на двузначное. Главное, набраться терпения и не ругать ребенка из-за малейшей оплошности. Тогда все получится, и математика, возможно, станет любимым школьным предметом.

  • Таблица деления на 1
  • Таблица деления на 3

” onclick=”if (!window.__cfRLUnblockHandlers) return false; window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;” rel=”nofollow” data-cf-modified-627a41bfd6be144e8063540e-=””> Печать

Автор: Мещеряков Александр
Категория: Таблица деления
Опубликовано: 11 декабря 2018

Деление чисел от 1 до 10 на 2

÷2
÷
2 ÷ 2 = 1
4 ÷ 2 = 2
6 ÷ 2 = 3
8 ÷ 2 = 4
10 ÷ 2 = 5
12 ÷ 2 = 6
14 ÷ 2 = 7
16 ÷ 2 = 8
18 ÷ 2 = 9
20 ÷ 2 = 10
Обновлено: 20 декабря 2018

image Первые годы школьной жизни в младших классах ребенку даются нелегко. Часто после урока математики они не совсем хорошо понимают пройденную тему. Чтобы помочь ребенку в усвоении пройденного материала, потребуется самому объяснить школьнику то, что ему не понятно.  На помощь приходят родители, у которых моментально возникает вопрос: «Как объяснить ребенку деление?». Сделать это можно несколькими способами, но изначально стоит убедиться, что ребенок хорошо усвоил такие математические действия, как сложение, вычитание и умножение.( Прочитать про способы обучения детей  сложению и умножению можете тут и тут).

Обучение ребенка основам деления

Важно, чтобы ребенок понимал суть такого математического действия, как деление. Для этого необходимо ему объяснить, что деление представляет собой разделение чего-либо на равные доли. Рекомендуется превратить процесс обучения в интересную игру, чтобы ребенок был сконцентрирован.

Деление в игровой форме

image

СОВЕТ: Таблицу деления так же важно выучить, как и таблицу умножения. Лучше это делать на каникулах!

Помогите ребенку понять, что деление — это обратное действие умножению.

Самым простым способом объяснить деление является проведение наглядной демонстрации разделения предметов на равные доли. В качестве делимых предметов можно использовать все, что угодно, но желательно что-то интересное для ребенка. В качестве примера можно воспользоваться конфетами и игрушками.

Как объяснить ребенку деление при помощи игрушек?

Изначально нужно взять 2 конфеты и попросить ребенка разделить их между 2 плюшевыми игрушками. Благодаря такому простому примеру ребенок поймет суть математического деления. После этого можно переходить к более сложным примерам деления.

Читайте также:  Как научить ребенка таблице умножения

Как происходит деление, подробно и в игровой форме показывается в следующем видео:

Также вы можете взять коробку цветных карандашей, которая будет выступать одним целым, и предложить малышу разделить их между собой и вами поровну. После, попросите ребенка посчитать, сколько карандашей было вначале в коробке и сколько он смог раздать.

По мере понимания ребенка, родитель может увеличивать число предметов и количество участников задачи. Затем нужно рассказать, что не всегда получается разделить что-либо поровну и некоторые предметы иногда остаются «ничейными». К примеру, можно предложить разделить 9 яблок между бабушкой, дедушкой, папой и мамой. Ребенок должен понять, что все получат лишь по 2 яблока, а одно окажется в остатке.

Деление в игровой форме

Таким образом, вы объясните азы деления и подготовите ребенка к более сложным школьным задачам.

СОВЕТ: Старайтесь заниматься со своим ребенком в игровой форме. Тогда ему будет интересно заниматься, а значит, занятия пройдут весело и без особых усилий.

Также вам будет интересно и полезно распечатать таблицу деления в виде картинки.

Деление с помощью таблицы умножения

image

Делить однозначные числа на однозначные проще всего с использованием таблицы умножения. Для этого достаточно объяснить ребенку, что деление является действием обратным к умножению. Сделать это можно на любом правильном примере деления натуральных чисел.

Например: 2 умножить на 3 будет 6. Основываясь на данном примере продемонстрировать ребенку процесс деления. Следует действовать следующим образом: разделить 6 на любой множитель, например, на число 2. В ответе получится 3, то есть множитель неиспользованный при делении.

Таким способом можно делить многозначные (двухзначные) числа на однозначные.

Алгоритм деления в столбик

Прежде, чем начать объяснение деления в столбик, нужно рассказать ребенку о значении делимого, делителя и частного. В примере 20:4=5, 20 является делимым, 4 делителем, а 5 частным. У каждой отдельной цифры в примере одно наименование.

Читайте также:  Как научить ребенка считать

Многозначные числа (трехзначные и двухзначные) проще всего делить в столбик. Для этого нужно записать многозначные числа уголком.

Например, нужно разделить трехзначное число 369 на однозначное число 3.

В качестве делителя записано трехзначное число 369, а в качестве делителя однозначное число 3. Первым делом важно объяснить ребенку, что деление в столбик происходит в несколько этапов:

  • Определение части делимого подходящего для первичного деления. В данном случае цифра 3. 3:3=1. Цифру 1 нужно записать в графу частное.
  • «Спустить» следующее делимое число. В данном случае это цифра 6. 6:3=2. Полученное число 2 нужно записать в частное.
  • Далее необходимо «спустить» следующее делимое число 9. 9 делится без остатка на 3, полученный результат необходимо записать в частное. Результатом деления трехзначного числа 369 на 3 получается 123.

Деление с остатком

Необходимо предупредить ребенка о встречающихся случаях деления с остатком. В качестве примера можно поделить двухзначное число 26 на 5 столбиком. В результате остается остаток 1.

Важно после объяснения позволить ребенку самостоятельно решить несколько примеров, чтобы весь изученный материал надолго остался в памяти ребенка.

А еще Вы можете посмотреть видео, где все объясняют понятным языком.

И напоследок, не приучайте себя и ребенка пользоваться онлайн калькулятором, чтоб узнать, как  разделить 145 на 9, 34 на 40, 100 на 4, 30 на 80, 416 на 52 и другие примеры. Это не принесет пользы не вам, ни ему.

В 1-ый класс идет не только ребенок – родители вместе с ним начинают и вместе с ним заканчивают образовательное учреждение. Учитель в школе не всегда успевает объяснить каждому отдельному ученику ту или иную дисциплину. Поэтому у домашнего образования — свои плюсы. Вы можете сами объяснить ребенку, индивидуально и не спеша то, что он не понял. В этот непростой период, главное — это набраться терпения и не ругать школьника из-за неправильных решений. Тогда все у вас получится.

Читайте также:  Агрессивный ребенок? Причины

Советуем к прочтению

Щенячий патруль игрушки купить Как развить память у ребенка Домашнее образование: Плюсы и минусы Сколько должен спать ребенок Ребенок грызет ногти. Причины и решение

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий